How to present your Experimental Results?

Pao-Ann Hsiung Embedded System Laboratory, National Chung Cheng University, TAIWAN

Contents

- How to do experiments?
- How to analyze your results?
- How to present your results?
- Conclusions

How to do experiments?

- Implementation Platform
- Implementation Details
- Examples

D

Implementation Platform

Fix one platform for implementation

- All experiments should be performed in the SAME platform
 - Otherwise, you need to explicit mention which were performed in which platform and WHY???
- Describe your platform in your Thesis
 - Machine: OS, CPU, RAM, ...
 - Language: C/C++/Java/VHDL/Verilog/SystemC (versions)
 - Tools: Compiler, Synthesizer, Profiler, Linter, ...
 - Libraries: Graphics, GUI, ...

Implementation Details

- Use only standard language versions: ISO C/C++, etc.
- Use the latest up-to-date functions
 - Don't use obsolete functions: gets(), ...
- Ensure compatibility across machines
 - Windows, Linux, FreeBSD, …
- Measure the following
 - CPU Time Usages, Memory Usages (getresources)
- Parameterize everything!!!
 - Don't use "constants" in your program statements! Use #define or variables.

Implementation Details

Perform error checking!!!

- Input files, wrong data input, enough memory, buffer overflow, ...
- Variable naming
 - Variable names should be consistent with that in your Thesis!!!
- Last but not the least: /* COMMENTS */
 - Add comments to your code wherever possible, especially in all the data structure definitions in header files
 - Use English, (preferably no Chinese!)
- One more please!!!
 - Makefile: that would save a lot of efforts!!!

Examples

Toy Example

- To illustrate the important steps/concepts in your method, algorithm, architecture, design, implementation
- Run it both manually and using your programs!

Large Real-World Examples

To illustrate how your method, algorithm, architecture, design scales to complex and large examples in the real-world

Random Examples

- To illustrate how your method, algorithm, architecture, design handles future systems
- To show the statistics!!!

How to analyze your results?

Goals

- To show the advantages of your method
 - Novelty, time/space efficiency, scalability, simplicity, robustness, adaptivity, ...
- To discover the limitations in your method
 - Functional: Cannot do something ...
 - Non-functional: Poor in doing something ...
- To compare your method with other existing methods
 - A naïve method
 - The most similar method(s)
 - Other methods

How to analyze your results?

The Expected

- Do you see what you expected?
 - Yes: Congratulations! You got what you wanted.
 - No: Find the cause!
 - □ Found: Congratulations! You got what you wanted.
 - □ Not found: Well, ...
 - □ Was your expectation correct?
 - $\hfill\square$ Was your design and implementation correct?

The Unexpected

- Do you see something unexpected?
 - No: Mmmm....
 - > Yes: Explore further, may be you found something worth investigating!

How to analyze your results?

- Try to be as thorough as possible!
 - Don't leave out any cases!!! (How many cases are there?)
 - Example: 6 features \rightarrow at least 6 different sets of experiments!
 - Don't take the results for granted!!! (Think! Think! Think!)
- Be in the shoes of the authors with whom you are comparing!
 - Would you like to be criticized or deemed inferior without solid evidences? No!!!

How to present your results?

- Use different formats
 - Tables
 - For toy example and illustration
 - Graphs
 - For statistics and scalability
- Use tools such as spreadsheets and graph plotters
 - MS Excel (to collect your results)
 - Matlab (to co-relate your results)
 - Gnuplot (to plot your results)

Conclusions

- The way you do and the way you present your experimental results have a great impact on what the readers conclude about your work
- Be confident about your advantages
- Be humble about your limitations
- Be sure about your future work